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Outline of this Talk

 Tailoring Casimir forces with metamaterials
  Effective medium/homogenization in Casimir physics

 Brief intro to Casimir physics

Tailoring Casimir forces with nanostructures

  Metallic gratings for Casimir force manipulation 

  Basics, relevance, and simple geometries 

Sunday, August 24, 14



Brief intro to Casimir phys.
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The Casimir force
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 Alternative interpretation: fluctuating 
charges and currents

 The magnitude and sign of the force 
depends on geometry, materials, and 
temperature

 Universal effect from confinement of 
vacuum fluctuations

~, c Depends only on         , and geometry
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The Lifshitz formula
Casimir interaction energy between materials slabs (Lifshitz 1956)
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Scattering theory
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Going to imaginary freq.

Kramers-Kronig (causality) �(i⇥) = 1 +
2
⇤

� ⇥

0

⌅���(⌅)
⌅2 + ⇥2

d⌅

The function                            has poles on the 
imaginary frequency axis at 
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Some limiting cases:
F / Td�3

F / d�3

F / d�4
(non-retarded limit, small distances)
(retarded limit, larger distances)
(classical limit, very large distances)

 Casimir physics is a broad-band frequency phenomenon
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The sign of the Casimir force

F
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The sign of the force is directly connected to the sign of the product 
of the reflection coefficients on the two plates, evaluated at 
imaginary frequencies.  As a rule of thumb, we have (p=TE, TM)

Rp
1(i�) · Rp

2(i�) > 0 (⌅ � ⇥ c/d)⇤ Attraction

Rp
1(i�) · Rp

2(i�) < 0 (⌅ � ⇥ c/d)⇤ Repulsion

In terms of permittivities and permeabilities:
�a(i⇥)� �b(i⇥)

µb(i⇥)� µa(i⇥)
Repulsion
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Ideal attraction-repulsion

µ = 1

Natural occurring materials do NOT have 
strong magnetic response in the optical 
region, i.e. 

Metamaterials

ε1 = ∞ ε2 = ∞

(Casimir 1948)
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ε1 = ∞ µ2 = ∞
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 Ideal attractive limit

 Ideal repulsive limit

 Real repulsion
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Metamaterials and Casimir
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Effective medium approx.

In this situation the MM is effectively a 
continuous medium, whose optical response 
can be characterized by an effective electric 
permittivity and an effective magnetic 
permeability.  

Imagine that the metamaterial is probed at 
wavelengths much larger that the average 
distance between the constituent “meta-
atoms” 
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Optical response

Metamaterial

εα(ω) = 1 −

Ω2

E,α

ω2
− ω2

E,α + iΓE,αω

µα(ω) = 1 −

Ω2

M,α

ω2
− ω2

M,α + iΓM,αω

Re ε2(ω) < 0 Re µ2(ω) < 0

Drude metal (Au)

ΩE,2/Ω = 0.1 ΩM,2/Ω = 0.3

ωE,2/Ω = ωM,2/Ω = 0.1

ΓE,2/Ω = ΓM,2/Ω = 0.01

ΩE = 9.0 eV ΓE = 35 meV

Infrared-optical frequencies

Typical separations 
d = 200 − 1000 nm

Ω/2π = 5 × 10
14

Hz

Close to the resonance, both         and           can be modeled by 
Drude-Lorentz formulas  

�(⇥) µ(⇥)
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Attraction-repulsion crossover 
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EMA: correct model for  

µe�(i⇤) < 1 < �e�(i⇤)

No Casimir repulsion!

µ

(Pendry 1999)

 (Rosa, DD, Milonni, 2008) 

 Drude-Lorentz model for permeability is wrong!

 The correct expression for               from Maxwell’s equations µe↵(!)

 Correct low frequency behavior 
very different from Drude-Lorentz 
model
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Other Casimir MMs: chirality

dispersive chirality: ⇥(⇤) =
⇤k⇤

⇤2 � ⇤2
�R + i�k⇤

 Constitutive relations mix electric and magnetic fields

Reflection matrices become non-diagonal
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Repulsion and chiral MMs

 (Soukoulis et al.,  2009) 

Repulsion can be achieved with 
strong chirality, which results in 
large values of rsp

 Casimir force between two chiral materials

 However, predictions are based on EMA in a region of parameters 
where EMA is expected to fail!

 Exact numerics shows that there is no repulsion
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Going beyond EMA
So far, we have treated the MM in the “long-wavelength 
approximation”, i.e., field wavelengths much larger than the typical 
size of the unit cell of the MM.

Homogeneous 
medium

Non-homogeneous 
medium

EMA beyond EMA

 How to calculate Casimir forces when EMA does not hold?
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Casimir nanostructures
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Scattering theory
The Casimir force still may be 
described in terms of reflections 
(scattering theory)

Symbolically, we may write the Casimir energy as

x

y

z

{a

{h

yy

{{{

h1
h3 h2

/
1X

n=1

1

n
[R1(i⇠)e

�dK(i⇠)R2(i⇠)e
�dK(i⇠)]n

Ri(!,k,k0, p, p0)

Sunday, August 24, 14



Finding the reflection matrix
The reflection matrix can be obtained with standard methods of 
numerical electromagnetism. One way is to solve Maxwell equations 
for the transverse fields

Assuming a two-dimensional periodic structure, we have
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Exact reflection matrix
One can then write the equations for the transverse fields as

Here H is a complicated matrix, that encapsulates the coupling of 
modes in the periodic structure.

By numerically solving this equation and imposing the proper 
boundary conditions of the field on the vacuum-metamaterial 
interphase (RCWA or S-matrix techniques), one can find the 
reflection matrix of the MM.
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2D periodic structures

 (Davids, Intravaia, Rosa, DD,  2010)

Example: Casimir force between a Au plane and Si pillars/grating/
membrane @ T=300 K
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Casimir plasmonics
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Mode summation approach
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In the case of metallic plates described by the plasma model
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 Alternative approach: compute Casimir energy as a sum over 
zero-point energies
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Surface plasmons interaction

z

z

 Surface plasmons: evanescent modes of the 
EM field associated with electronic density 
oscillations at the metal-vacuum interface.

 When the tails of the evanescent fields overlap, 
the two surface plasmons hybridize

 At short distances the Casimir energy is given by the shift in the zero-point 
energy of the surface plasmons due to their Coulomb (electrostatic) interaction)
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Mode spectrum in a cavity

TM-modes propagative modes look qualitatively like TE 
modes.

There are only two evanescent modes. They are the 
generalization to all distances of the coupled plasmon 
modes.
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Plasmonic & photonic parts

Lifshitz = Red + Blue

Can one control the Casimir force by changing the 
balance of the two contributions?

 Their sum is always attractive due to a delicate cancellation

 The plasmonic contribution is repulsive at large distances, and 
attractive at short distances

 The photonic contribution is always attractive

 (Intravaia et al, 2005)
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 Metallic nano-gratings 
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Strong force reduction
 Torsional balance set-up

 Metallic sphere

 Metallic nanostructures w, p, h ⇡ 100 nm

 Sputtering and electroplating

filling factor

f =
w

p

(R = 150 µm)
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Modeling and simulation

 Exact plane-grating pressure Ppg

 Use of standard PFA to treat the sphere’s curvature

F 0
sg ⇡ 2⇡RPpg d/R < 6⇥ 10�3

Scattering approach + modal expansions
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Reflection matrices
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Normalizing to grating’s PFA
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(Similar filling factors)

Small separations:  PFA 
underestimates the total pressure

Large separations:  PFA 
overestimates the exact pressure

Pressure is going to zero faster than 

 Strong suppression of the Casimir force

PPFA
pg (d) = fPpp(d) + (1� f)Ppp(d+ h)

f1 = 0.387f1 = 0.360

d d+ h

d�4

 (Intravaia et al., 2013)
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Previous works on Si gratings

Sphere radius of 50 µm

(Chan et al, 2008)

period=1µm, depth = 1070 nm, and filling factor = 0.510

PFA underestimates the real force
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Open problem
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Double checks on the 
experiment show no 
apparent mistakes

Numerical crosschecks 
show that the theory is 
accurate within few %

Experiment/theory discrepancy: open problem in Casimir physics
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What is going on?
 Are there problems with the experiment?

 Are we correctly describing the experiment?

 Is something wrong with the theory?

- set-up similar to previous ones
- sphere-plane force re-obtained with new set-up

- finite-size grating
- thermal equilibrium

- Optical properties
- Surface roughness
- Electrostatic patches
- Validity of PFA for the sphere’s curvature
- etc
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Final comments
 Importance of correct description of optical properties

 Care must be exercised when using effective medium 
approximations in Casimir physics

 There are still open problems

 Narrow-band intuition (as in standard photonics) does not 
always work in Casimir physics
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Thank you!
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